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We document the impact of COVID-19 on inflation modelling within a vector autore-
gression (VAR) model and provide guidance for forecasting euro area inflation during
the pandemic. We show that estimated parameters are strongly affected, leading to
different and sometimes implausible projections. As a solution, we propose to augment
the VAR by allowing the residuals to have a fat-tailed distribution instead of a Gaussian
one. This also outperforms with respect to unconditional forecasts. Yet, what brings
sizeable forecast gains during the pandemic is adding meaningful off-model information,
such as that entailed in the Survey of Professional Forecasters. The fat-tailed VAR loses
part, but not all of its relative advantage compared to the Gaussian version when
producing conditional inflation forecasts in a real-time setup. It is the joint fat-tailed
errors and multi-equation modelling that manage to robustify models against extreme
observations; in a single-equation model the same solution is less effective.
© 2022 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
s

1. Introduction

‘In reality, however, the distribution of shocks hitting the
economy is more complex.... [The shocks] might exhibit
excess kurtosis, commonly referred to as ‘‘tail risk’’ in
which the probability of relatively large disturbances is
higher than would be implied by a Gaussian distribution.’

[Mishkin, 2011]

As the pandemic unfolded worldwide, macroeconomist
struggled to make sense of their models after adding the
new COVID-19 observations. The variation exhibited by
some macroeconomic series was so large (e.g. real activity
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and labour market indicators) that this sufficed to distort
the estimated coefficients since March 2020. This was
shown for the U.S. (Carriero et al., 2021; Lenza & Primiceri,
2020; Schorfheide & Song, 2020) and we show that this
is also true for the euro area.

In this paper we investigate the impact of the COVID-
19 shock on one of the most popular time series models—
Sims’ vector autoregression (VAR) model—and discuss the
results by focusing on euro area inflation. Our lessons
are valid for a wide range of empirical analyses, but we
choose to focus on inflation because this has been a par-
ticularly hard-to-grasp indicator since the Great Financial
Crisis on both sides of the Atlantic. In the decade prior
to the pandemic, inflation across advanced economies
consistently surprised economists on the downside. The
euro area in particular struggled with low inflation to
the extent that inflation expectations became less well
anchored to the ECB’s inflation aim, adding to existing
disinflationary pressures (Baumann et al., 2021). Infla-
tion continued to surprise during the pandemic, starting
in 2020. Initially, while energy inflation fell quickly, the
response of euro area core inflation was modest rela-
tive to the decline in activity. From the middle of the
year onwards, headline inflation fell further as core in-
flation increasingly reflected disinflationary tendencies,
r B.V. All rights reserved.
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nd overall inflation surprised on the downside. Starting
n 2021, the situation completely reversed and inflation
nce again took centre stage in the economic debate,
s its surge took central banks and other professional
orecasters by surprise. The normalisation of the economy,
nsuing supply-side bottlenecks, and rising commodity
rices put upward pressure on prices. In this context of
ighly atypical economic developments—marked by the
conomic lockdown and the subsequent re-opening—the
uestion is which tools can be still employed to model
nflation.

We show that using a standard Gaussian BVAR to
odel inflation distorts economic inference. The incoming
ata after March 2020 heavily impact the parameters of
onventionally estimated models and this is something
o be aware of when forecasting or conducting empirical
nalyses covering this period, irrespective of the scope.
ere we focus on the analysis of inflation, but the critique
s generally valid.

The contribution of our paper is twofold: (i) first, we
ropose solutions for the problem that the change in
arameters poses for both in-sample and out-of-sample
nference; (ii) second, we show what brings forecast gains
hen trying to project inflation during the pandemic. To
he best of our knowledge, we are the first to discuss
eal-time inflation forecasting for the euro area for this
articular abnormal period. We validate our proposed
odel by looking at a longer period of time (in a pseudo-

eal-time inflation forecasting exercise) and by providing
vidence for a large set of advanced economies.
We tackle the problem of VAR parameters becom-

ng unstable when adding the COVID-19 observations by
roposing a tractable and elegant solution, namely to
elax the assumption that the errors are normally dis-
ributed and assume instead that they follow a Student’s
-distribution. Intuitively, unusually large shocks are more
ikely to occur under t-errors as Gaussian errors, since
he former has fatter tails. This allows the residuals to
oak up the abnormal variation, stabilising the parameter
stimates.
Our paper is related to the strand of literature emerg-

ng after the Great Recession trying to accommodate
ail events in macro-models. For DSGEs, Chib and Ra-
amurthy (2014), Cúrdia et al. (2014), and Ascari et al.

2015) argue that models with a t-distributed shock struc-
ture are strongly favoured by the data over standard
Gaussian ones.

For VARs, Chiu et al. (2017) and Chan (2020) show that
allowing for fat-tailed errors improves in-sample fit and
forecasting properties.1 We show that euro area macroe-
onomic data exhibit substantial tail risk even before the
andemic. Moreover, this extension suffices to deal with
he impact of the pandemic (which is a more rare and
xtreme event than recessions).
We also contribute to the rising literature on how

tandard models can be adapted to withstand the impact
f the COVID-19 observations. Lenza and Primiceri (2020)

1 Even before the Great Recession some economists warned that
the unconditional distribution of macro-variables is not Gaussian
(see Christiano (2007) or Fagiolo et al. (2008)).
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and Carriero et al. (2021) propose downweighing the
impact of abnormal observations through assumptions on
the associated variance of the residuals. Our solution is
similar in spirit. We believe it is still too soon to ascer-
tain a break in the economic transmission mechanisms,
and thus parameters should not display dramatic changes
with respect to pre-COVID-19 times, especially if a nor-
malisation in economic developments is to be expected.
At the same time, we do not exclude the possibility that
the COVID-19 observations might affect macroeconomic
relationships in the future (as reflected by model param-
eters). From this point of view, our approach is more
flexible than simply cutting the sample to the pre-COVID-
19 period or including dummy variables for each quarter
over the pandemic. The observations in 2020 will remain
an issue for time series models going forward, so time
series models have to be adapted for a longer period of
time.

In a standard Gaussian BVAR, the response of inflation
to a shock in real activity gradually weakens and appears
to be stabilising at lower levels compared to the pre-
pandemic period. In our fat-tailed BVAR there is still some
weakening, but to a smaller extent. There are several
reasons that call for caution when it comes to ascertaining
changes in established economic relationships, such as
the one between inflation and real activity, for instance,
known as the Phillips curve. The pandemic is not the
usual macroeconomic shock when it comes to its com-
position and its size. In terms of its composition, it is a
multifaceted shock, actually a combination of demand and
supply shocks acting at the same time. In terms of its
size, it is an abnormally large shock which distorts any
estimate not equipped to deal with tail events. On top,
there have been unusual data distortions and unusually
high uncertainty regarding slack.

We show that it is the joint multivariate and fat-
tailed errors that manage to robustify models against
extreme observations; in a single-equation model the
same solution is less effective. We take a simple Phillips
curve model and show that estimated parameters change
notably when adding the COVID-19 observations to the
sample, implying a drastic flattening in the euro area. A
fat-tailed error distribution does not appear to be a panace
this time around. In the multiple-equation system of a
VAR the fatness of tails pertaining to the error distribution
(and hence the extent to which the errors can soak up
abnormal observations in order not to distort coefficients)
is informed by the simultaneous developments in all
variables. In single-equation models it is the development
of the dependent variable that matters more in informing
the properties of the residuals; extreme developments oc-
curred in the first part of the pandemic on the real activity
front and less so on the nominal side of the economy.
Thus, the residuals of a Phillips curve do not have such
fat tails as the residuals of the inflation equation in a VAR
model that also includes GDP, for instance. Hence, multi-
equation models are more flexible and better equipped to
deal with the impact of abnormal observations.

As an alternative to fat-tailed errors, we find that
adding more variables to the Gaussian BVAR, together
with a reasonably tighter prior to control for the larger
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imension, yields more stable results than a smaller-scale
VAR. This suggests that in large-dimensional models the
mpact of variables with abnormal dynamics is mitigated;
lso, an appropriately informative prior helps in disciplin-
ng the results. Still, the model with t-distributed errors
utperforms in delivering more stable parameters.
The pandemic-related change in coefficients also me-

hanically affects unconditional forecasts in a Gaussian
VAR. The fat-tailed and the large-scale BVAR alleviate
his problem. Yet, we find that this problem of param-
ter and forecast instability is also mitigated in a stan-
ard Gaussian BVAR when relevant off-model information
s included, as conditional forecasts appear to be well
ehaved.
Turning to the second contribution on how our pro-

osed fat-tailed BVAR would have fared when forecasting
uro area inflation in real time in this turbulent period, we
ind that a fat-tailed BVAR produces more accurate fore-
asts than a Gaussian BVAR. Our results also hold when
erforming a forecast evaluation over a longer period (but
n a pseudo-real-time fashion due to data constraints)
nd are confirmed for a large set of advanced economies.
et, in abnormal times unrecorded in the available esti-
ation sample, it is hard to trust forecasts based solely
n exploring historical regularities. We argue that these
imes are best suited to add information from outside
he model to inform purely model-based results. Lenza
nd Primiceri (2020), Primiceri and Tambalotti (2020),
lso incorporate some kind of off-model information to
roduce more plausible forecasts during the pandemic.
We find that, indeed, including off-model information

rings sizeable gains to forecasting inflation during the
andemic. We make use of the information included in
he ECB Survey of Professional Forecasters (SPF), first by
ooking at ‘hard conditional’ forecasts where we impose
he expected GDP path (together with a constant ex-
hange rate and oil price futures), and second by looking
t ‘soft conditional’ forecasts where we tilt the uncon-
itional forecasts towards expectations of inflation and
rowth from the SPF. Tilting towards SPF expectations can
e a valid way to provide the model with some degree
f informed judgement, as professional forecasters do not
olely rely on models (which might have been affected by
OVID-19 observations), but use a substantial degree of
udgement when forming their beliefs about the future.
lso, there is evidence that such tilting improves inflation
orecasting in certain challenging times, such as in the
ost-Great Recession period, as a way of indirectly ac-
ommodating structural changes (see Tallman and Zaman
2020) and Ganics and Odendahl (2021)). Both the consid-
red hard and soft conditional inflation forecasts would
ave been superior to unconditional ones in a standard
aussian BVAR. Compared to these, the BVAR with fat-
ailed errors largely loses its comparative advantage, sug-
esting that, indeed, meaningful off-model information
akes a difference in forecasting in a standard BVAR.
Notwithstanding our documented forecast gains over
standard Gaussian BVAR, also in our best models, in

he first phase of the pandemic, inflation tended to sur-
rise on the downside, and subsequently it turned out
521
to be notably higher than foreseen.2 The puzzling be-
haviour of inflation during the pandemic is also reflected
in the marked revisions in short-term inflation expecta-
tions of professional forecasters. Throughout 2020, ana-
lysts lowered their inflation expectations, particularly for
the short term. Part of this revision was driven by oil
price developments. In addition, in the perceptions of
SPF panellists, demand factors were largely considered
dominant relative to possible supply-side and scarcity
effects. In the second year of the pandemic, professional
forecasters, who revised their near-term outlooks quite
markedly, were caught off guard by the extent of the
inflationary pressures that global supply-side bottlenecks
and increases in input costs created. This pattern in the
revision of expectations is also valid for other advanced
economies, such as the U.S. (see the discussion in Meyer
et al. (2021)).

The rest of the paper is structured as follows. Section 2
discusses parameter instability in VAR models when the
abnormal COVID-19 observations are added to the sam-
ple. Section 3 assesses the impact of this parameter insta-
bility on unconditional and conditional inflation forecasts,
and Section 4 conducts a formal forecast evaluation for
euro area inflation during the pandemic. Section 5 ex-
plains why multi-equation models (such as VARs) are
better equipped to deal with the impact of abnormal ob-
servations than single-equation models (such as Phillips
curves), and Section 6 concludes.

2. The impact of the COVID-19 shock on estimates
within VAR models

In this section we consider one of the most popu-
lar models employed in macroeconomics, namely Sims’
vector autoregression (VAR) model. For our analysis, we
use the small-scale VAR that was employed to under-
stand the drivers of euro area inflation by Bobeica and
Jarociński (2019). Fig. 1 shows the data over the sample
1980:Q1–2021:Q2. There is some variation during the
COVID-19 crisis in the considered variables, but nothing
unprecedented, with the exception of the real GDP and
the euro area share in world GDP. The existing litera-
ture dealing with the impact of the pandemic on time
series modes has focused on the U.S., where some eco-
nomic variables, in particular the unemployment rate,
have recorded formidable spikes. Yet, we show that the
variation recorded by the euro area variables, even if
less pronounced than in the U.S. case, is large enough to
distort the parameter estimates in a standard BVAR.

Fig. 2 shows impulse response functions (IRFs) to a
one-standard-deviation shock in real GDP estimated over
an expanding window until 2019:Q4, 2020:Q1, . . . , 2021:Q2
starting in 1980:Q1.3 Estimates are obtained using a Sims

2 In 2020, the sharp fall in oil prices was a result of global
lockdowns and not captured by oil price futures. In 2021, apart from
the economic drivers, a set of statistical effects (e.g. changes in the
weights of the consumption basket and the reversal of a value-added
tax decrease in Germany) not captured by our model significantly
increased inflation.
3 We do not attach any structural interpretation to this shock, but

merely use it to study the dynamic properties.
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Fig. 1. Data set for the baseline small-scale euro area BVAR. Note: Real GDP, HICP, price of oil, and nominal effective exchange rate are in log-levels
imes 100; short-term rate, 10-year government bond spread, and share in world GDP are in percentage points.
Fig. 2. Impulse response functions in a small BVAR with Gaussian errors. Note: Impulse response functions to a one-standard-deviation shock in
eal GDP from a BVAR with Gaussian errors using a Sims and Zha prior. Coloured thick lines are median estimates, and the dark (light) blue area
s the 68% (90%) credible interval for the estimation window until 2019:Q4.
nd Zha (1998) prior; which we label as ’Sims and Zha
rior’.4 The inclusion of the COVID-19 observation sub-
tantially affects the IRF estimates as compared to the
re-COVID-19 times. Specifically, with the inclusion of
he 2020:Q2 observation, the IRF of real GDP changes
ubstantially, first it becomes more persistent, afterwards

4 We construct dummy observations along the lines of Bańbura
et al. (2010) and Doan et al. (1983), which reflect Minnesota-type
shrinkage on VAR coefficients coupled with two sum-of-coefficients
restrictions. For estimation, we use dummy observations to construct
the moments of the implied normal-inverse-Wishart prior.
522
it subsides. The transmission of the shock to inflation
gradually weakens and appears to be stabilising at lower
levels; the reaction of inflation to the generic GDP shock
is flattened. The impact on financial variables is also
dampened. This illustrates that parameter estimates are
sensitive to unusually large innovations in a standard
Gaussian BVAR, which is a major shortcoming for analysis
in times of COVID-19, even after the large swings in real
activity have passed.

The prior choice makes a difference, with more infor-
mative priors having an upper hand in delivering more
stable coefficients once the COVID-19 observations are
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dded. Lenza and Primiceri (2020), Schorfheide and Song
2020), and Carriero et al. (2021) document using monthly
.S. data that estimated VAR models are explosive when
he recent COVID-19 observations are included. While the
stimated IRFs in Fig. 2 are sensitive to the inclusion of
he COVID-19 observations, they are not explosive for our
hosen prior specification. In Online Appendix B, Panel
a) in Fig. B.1 shows that this explosive behaviour is
resent in the euro area case as well if we adopt a weakly
nformative prior for the VAR coefficients.5 This suggests
hat the design of the prior, the chosen amount of shrink-
ge, as well as the data set at hand dictate whether a
ayesian VAR model becomes explosive once COVID-19
bservations are included in the sample. Moreover, we
lso explore whether a higher degree of shrinkage applied
o our baseline Sims and Zha prior dampens the impact of
OVID-19 on the change in the VAR coefficient estimates;
e label this the ‘strong Sims and Zha prior’.6 Panel (b)

n Fig. B.1 shows that the higher degree of shrinkage
echanically disciplines the coefficients in the VAR to
ome extent, but there is still notable instability in the
RFs once the COVID-19 period is included in the sample,
hich stems from a change in residual correlations.7 Yet,

mposing a very dogmatic prior comes with the drawback
f silencing the information coming from the data.

.1. Solutions for estimation within a VAR

.1.1. Accommodating COVID-19 observations via alterna-
ive error structures

Several proposals on how to tackle the problem of
hanging parameters due to the COVID-19 observations
ave been put forward in the literature.8 The approach
aken by Lenza and Primiceri (2020) and Carriero et al.
2021) have in common the belief that macroeconomic
elationships which held in the past are assumed to be
till informative. That is, they propose downweighing the
bnormal observations by allowing the variance of the
esiduals to adjust quickly to the COVID-19 observations.

Lenza and Primiceri (2020) propose an explicit volatil-
ty model for the residuals corresponding to the COVID-
9 observations. Their solution is tractable and easy to
nderstand, but requires specifying exactly when the
bnormal observations start and estimating the decay of
olatility based on few observations (especially when
orking with quarterly data). Carriero et al. (2021) pro-
ose a more flexible solution that allows for variable-
pecific outliers in the volatility process, leaving fewer
hoices to the modeller. Here volatility is a function of its

5 The weakly informative prior is calibrated by centring the VAR
coefficients around zero and setting the variance of all coefficients to
one, except for the constant, which we set to 10. The scale of the
inverse Wishart distribution is set to the identity matrix.
6 Specifically, we divide the prior variances for the coefficients by

a factor of four. A higher level of shrinkage is typically recommended
for very large VARs with over 100 variables; see Bańbura et al. (2010).
7 For brevity, we do not report changes in the residual correlation

structure for our considered VAR models.
8 See Carriero et al. (2021), Huber et al. (2020), Lenza and Primiceri

(2020), and Ng (2021) in the context of VARs, and Antolín-Díaz et al.
(2021) for dynamic factor models.
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past values, but it is also allowed to jump with abnormal
observations with a certain probability. One possible lim-
itation of this model class is related to the sensitivity to
the ordering of variables (see Primiceri (2005) and Cogley
and Sargent (2005)). Specifically, when volatility changes
idiosyncratically, estimates of the time-varying covari-
ance matrix may be extremely sensitive to the ordering of
variables, due to the structure imposed by the triangular
factorisation of the time-varying covariance matrix in
their model, see Hartwig (2020).

Our proposal does not involve making ad hoc choices
and is thus more in line with the approach of Carriero
et al. (2021). We propose to abandon the Gaussian error
structure and assume a multivariate t-distribution for the
errors instead; see Ni and Sun (2005) and Chan (2020).
Intuitively, extremely large shocks are more likely to oc-
cur under the Student’s t-distribution, as it has fatter tails
than the Gaussian one. Consequently, not all observations
are equally informative for the parameter estimates, and
the impact of rare observations such as those related to
the COVID-19 pandemic are downweighed, which sta-
bilises the relationship between variables. The idea that
the data might favour models with errors that haver fatter
tails is inspired by the literature emerging after the Great
Recession (see Chan (2020), Chiu et al. (2017), Cúrdia et al.
(2014)), when Gaussian models failed to properly account
for the strong variation in some variables; we show that t-
distributed errors work also during the pandemic. This so-
lution shares the spirit of the aforementioned ones in the
sense that the COVID-19 observations are downweighed
by some form of conditional variance within the estima-
tion framework. Similar to Lenza and Primiceri (2020),
we treat the change in shock volatility as being common
across all variables instead of considering variable-specific
volatility as in Carriero et al. (2021). This is a simple
and tractable assumption but neglects potential change
of the residual correlations during the pandemic. As op-
posed to the latter paper, in our VAR, residuals have con-
stant second-order moments (see Appendix A for more
technical details on the VAR with t-errors).9 Compared
to standard stochastic volatility models, we argue that
Student’s t-distributed errors—or other fat-tailed error
distributions—are better suited during the pandemic, as
the COVID-19 observations may inflate the volatility pro-
cess for too long in widely employed stochastic volatility
models (without outlier correction or t-distributed er-
rors). This may lead to rather imprecise density forecasts;
see Carriero et al. (2021) and Hartwig (2021).10

Fig. 3 shows the counterpart to Fig. 2 under the as-
sumption that the errors in the Bayesian VAR are multi-
variate t-distributed. In general, the IRFs are much more

9 Antolín-Díaz et al. (2021) suggest that the typical comovement
between different variables changed with the pandemic, and within
a dynamic factor model, the authors distinguish between persistent
increases in aggregate volatility and transitory ones specific to in-
dividual variables. We do not account for such change explicitly;
indirectly, while conducting conditional forecasting, we also inform the
comovement between certain variables.
10 Inference about macroeconomic volatility also changes, as the
COVID-19 observations inflate the estimated error volatility of the
stochastic volatility process due to the ex post smoothing of the spike
during the pandemic.
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Fig. 3. Impulse response functions in a small BVAR with fat-tailed errors. Note: Impulse response functions to a one-standard-deviation shock in
real GDP from a BVAR with fat-tailed errors using a Sims and Zha prior. Coloured thick lines are median estimates, and the dark (light) blue area
is the 68% (90%) credible interval for the estimation window until 2019:Q4.
stable across different estimation samples compared to
their Gaussian version.11 Thus, this solution allows for
he impact of COVID-19 observations to be soaked up by
he heavy tails of the VAR residuals, leaving parameter
stimates largely unaffected.12 Zooming in on inflation,

for the pre-COVID-19 sample, the reaction of inflation
to real GDP is somewhat weaker in the VAR with fat-
tailed errors compared to the one with Gaussian residuals.
When adding the COVID-19 observations, the response of
inflation to a shock in real GDP also weakens, but to a
lesser extent than in the Gaussian VAR case.

We estimate the Bayesian VAR with t-errors by mak-
ing use of an equivalent scale mixture of normal rep-
resentations of the VAR model (see Appendix A). This
estimation technique yields, as a by-product, an interest-
ing latent variable, which we label lambda.13 This vari-
able reflects the common volatility of the VAR residuals
and is independently inverse-gamma distributed. As such,
lambda is a noisy variable that can be interpreted as the
high-frequency common volatility of the data (Chiu et al.,

11 The IRFs of the fat-tailed VAR are stable under the weakly
informative prior and under the strong Sims and Zha prior; see Panels
(a) and (b) in Fig. B.2 in Online Appendix B.
12 The dynamic propagation of the shock is somewhat dampened
due to the revised prior distribution—which implies a tighter prior for
some variables—in the expanding sample estimation; see also Hartwig
(2021). Fig. B.3 shows that under a pre-COVID-19 Sims and Zha prior,
the IRFs of the Gaussian model become even more unstable (Panel (a)),
while those of the fat-tailed model are virtually unchanged (Panel (b)).
13 In Appendix A, λt is defined in the variance scale. In the text, we
use lambda =

√
λt . Technically, this variable mixes multivariate normal

distributions such that it mimics the multivariate t-distribution with
a particular degree of freedom; see Geweke (1993) and Ni and Sun
(2005).
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2017) or used as an outlier detection tool (Jacquier et al.,
2004).14 ,15

Panel (a) of Fig. 4 depicts the latent high-frequency
volatility in our data set alongside a measure of macroe-
conomic uncertainty.16 Lambda spiked during the Great
Recession and sky-rocketed during the COVID-19 crisis,
capturing the fact that there was abnormal variation or
statistical outliers in the data. The timing of these spikes
coincides with the peaks in measured macroeconomic

14 Importantly, lambda is used as an estimation device to simulate
the fat tails of the t-distribution. It is not to be confused with a
traditional model for time-varying volatility such as stochastic volatility
or GARCH.
15 Since λ1 , . . . , λT are conditionally independent given the model
parameters and the data, we sample each of them independently, as
in Chan (2020). The information sources used to estimate lambda at
each quarter are the sum of squared normalised VAR residuals for
that quarter (the residuals are conditional on the VAR parameters
utilising the entire sample), the number of variables included in the
VAR, the degrees of freedom of the t-distribution, and the assumed
prior inverse-gamma distribution; see the conditional posterior dis-
tribution of lambda in Eq. (9) in Appendix A. The influence of this
prior specification on the width of the estimated uncertainty band
for lambda depends on the degrees-of-freedom parameter (see Eq.
(5) in Appendix A), which ensures that the errors are t-distributed
(see Geweke (1993)). The lower the degrees-of-freedom parameter (ν),
the more widespread the prior inverse-gamma distribution of lambda.
Our chosen prior distribution for the degrees-of-freedom parameter is
uninformative about the posterior shape of the t-distribution, as we
assume a uniform prior distribution (see Appendix A). Therefore, we
are agnostic about the heavy-tailedness of the t-distribution.
16 We use the U.S. macroeconomic uncertainty index of Jurado et al.
(2015) as an imperfect proxy for the euro area because the available
Economic Policy Uncertainty index for the euro area derived by Baker
et al. (2016) focuses too much on policy and does not reflect the
macroeconomic uncertainty embedded in our variables.
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Fig. 4. Macroeconomic uncertainty and tail risk. Note: (a) Posterior median and 90% credible interval of the high-frequency volatility lambda in the
VAR with t-distributed errors and Sims and Zha prior. (b) Posterior distribution of the degrees-of-freedom parameter estimated on an expanding
ample.
ncertainty.17 Lambda capturing the spikes in macroe-
onomic uncertainty is another argument in favour of
llowing for heavy tails: the model with t-distributed

errors identifies these periods to be less informative for
the parameter estimates compared to the Gaussian model,
which treats all observations equally. Therefore, standard
Gaussian models may yield distorted estimates of macroe-
conomic relationships in turbulent times.

Did the euro area economy exhibit heavy-tailed errors
prior to the pandemic? Panel (b) of Fig. 4 shows that the
posterior distribution of the degrees-of-freedom param-
eter (ν) becomes sharper and shifts to the left once the
COVID-19 observations are included, indicating a higher
tail risk. However, the decline of the posterior median for
ν is moderate, from 4.6 in the pre-COVID-19 period to 3.5
in 2021:Q2. Therefore, the tail risk in the euro area econ-
omy increases somewhat with the COVID-19 observa-
tions.18 We interpret these findings as evidence that the
data not only exhibit fat tails due to the extreme COVID-
19 observations but also exhibited substantial tail risk
even before, which speaks in favour of the t-distribution
assumption as a more appropriate treatment of the data
in general.

An alternative way to check whether the data ask for
fat-tailed errors is to compare the log marginal likelihood
of the Bayesian VARs with Gaussian and t-distributed
errors. Table 1 shows these estimates for various prior
specifications and on an expanding estimation window.19

17 By construction, our measure of high-frequency volatility (lambda)
is of a short-lived nature, as under t-errors, large shocks are modelled
as independent events and are not allowed to be serially correlated.
This can explain why during the Great Recession, the proxy for
macroeconomic uncertainty was elevated for longer than what lambda
would imply. The same applies for the case of the COVID-19 shock.
18 Nevertheless, the log probability of large tail events is rather
similar for a degrees-of-freedom parameter between 3 and 5, while for
larger values of ν, the tails become substantially thinner. Compared
to the Gaussian case, a ten-standard-deviation shock receives a log
probability of −50, i.e. 7.69×10−21 percentage points, which practically
means that such an event will never materialise. Under t-errors with
a degrees-of-freedom parameter between 3 and 5, the probability
of such an event is roughly comparable to a four-standard-deviation
shock under normal errors, which is about 0.0134 percentage points.
19 For the VAR with t-errors, we use the algorithm in Chan (2020).
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By comparing the log marginal likelihood figures in Panels
(a) and (b) we find decisive evidence in favour of fat tails
both before and during the COVID-19 pandemic, as well
as across all different prior specifications.

The optimal degree of parameter shrinkage is not af-
fected by the COVID-19 observations. Specifically, both
models favour our standard calibration for the Sims and
Zha prior over the weakly informative or the strong Sims
and Zha prior with a higher degree of parameter shrink-
age.20 This is in contrast to the result reported in Lenza
and Primiceri (2020), who document that the Gaussian
VAR model likes less shrinkage after COVID-19.

2.1.2. Expanding the data set by adding more variables
As an alternative to fat-tailed errors in the VAR, we

investigate whether employing a larger model ensures
more stable parameters during the pandemic. Intuitively,
in large-dimensional models, the impact of variables with
abnormal dynamics might be mitigated. A larger set of
data might offer a hedge when it comes to estimation
and forecasting in the presence of instabilities; see Rossi
(2020). To explore this possibility, we estimate our BVARs
with 23 variables used in Bobeica and Jarociński (2019) to
understand inflation dynamics in the euro area.21

Fig. 5 shows the impulse response functions for real
GDP and HICP inflation to a one-standard-deviation shock
in real GDP for both the Gaussian and fat-tailed BVAR with
more variables, using the two variants of the Sims and
Zha prior.22 The IRFs of the large Gaussian BVAR with a

20 We also conducted a more granular grid search on the tightness
of the dummy observation prior and found that the t-error model
generally favours a lower level of tightness as compared to the
Gaussian model.
21 The VAR includes HICP, real GDP, real private consumption, real
private investment, total employment, unemployment rate, capacity
utilisation, consumer confidence, PMI, the rest-of-the-world real GDP,
nominal effective exchange rate, EUR/USD exchange rate, the oil price
in dollars, non-energy commodity prices, U.S. real GDP, U.S. CPI, U.S.
short-term interest rate, EONIA, two-year government bond spread,
10-year government bond spread, mortgage bank lending spread,
VSTOXX index of financial volatility, and economic policy uncertainty.
See Bobeica and Jarociński (2019) for details regarding the data set.
22 In Online Appendix B, Figs. B.4, B.5, and B.6 show the IRFs for all
variables and for all prior specifications.
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Table 1
Log marginal likelihood for the small BVAR model.

Weak SZ Strong SZ Weak SZ Strong SZ

19Q4 −1748.65 −1336.97 −1440.18 19Q4 −1686.01 −1261.99 −1381.34
20Q1 −1791.18 −1376.40 −1475.32 20Q1 −1707.68 −1283.12 −1402.46
20Q2 −1886.03 −1484.85 −1585.18 20Q2 −1740.65 −1315.44 −1434.05
20Q3 −1966.81 −1539.32 −1631.13 20Q3 −1772.91 −1348.37 −1463.95
20Q4 −1986.24 −1550.60 −1642.30 20Q4 −1786.26 −1359.18 −1475.18
21Q1 −2003.93 −1568.70 −1658.81 21Q1 −1802.27 −1374.57 −1490.36
21Q2 −2016.85 −1577.25 −1667.85 21Q2 −1813.50 −1384.72 −1501.50

(a) BVAR with Gaussian errors (b) BVAR with fat-tailed errors

Note: The bold figure indicates the maximum log marginal likelihood for each model in a selected estimation window. ‘Weak’ stands for a weakly
informative prior, and ‘SZ’ stands for Sims and Zha.
Fig. 5. Selected impulse response functions in a large BVAR. Note: Impulse response functions to a one-standard-deviation shock in real GDP from
the large BVAR with Gaussian (BVAR) and fat-tailed errors (BVAR-t) using various priors. Coloured thick lines are median estimates, and the dark
(light) blue area is the 68% (90%) credible interval for the estimation window until 2019:Q4.
Sims and Zha prior exhibit substantial instability as soon
as the COVID-19 observations are included and become
explosive in 2020:Q2; see Panel (a). The change in the
IRFs persists after the initial COVID-19 shock. When im-
posing more shrinkage, as recommended for larger mod-
els, the BVAR coefficients become better behaved; see
Panel (b). Compared to Fig. 2, the IRFs of this large BVAR
are somewhat more stable when adding the COVID-19
observations. Nevertheless, the covariance matrix is still
substantially affected by the extreme observation, which
leads to a different propagation of the shock. In contrast,
estimates from a large BVAR with heavy-tailed errors
are well behaved across different prior specifications; see
Panels (c) and (d). Therefore, even in large VARs, fat-tailed
errors are a sufficient extension to make the model robust
against the extreme variations triggered by the pandemic.

Since the large Gaussian BVAR produces more stable
dynamics only with the strong Sims and Zha prior, a nat-
ural question is whether the marginal likelihood would
also favour this model. Table 2 shows the log marginal
likelihood for these VARs. Again, the models with fat-
tailed errors yield higher marginal likelihoods, suggesting
that they are preferred by the data. At the same time,
the standard Sims and Zha prior, which was used for the
526
small-scale BVAR, is preferred over its strong variant for
all estimation samples. This criterion would thus guide
us to choose an explosive over a stable model, which is
a clear caveat when selecting an appropriate model for
inference. This suggests that model diagnostics cannot be
blindly trusted in the case when the error distribution
is heavily mis-specified—as it is in the case with the
abnormal observations during the pandemic (see also Sec-
tion 4.2). Therefore, we argue that in times of COVID-19,
one has to consider other aspects as well when selecting
the most appropriate model.

3. The impact of the COVID-19 shock on forecasts within
VAR models

It is difficult to ascertain what works in forecasting
during the pandemic, as there are only a few observations
available as yet. To provide some guidance for inflation
forecasters, we first investigate how unconditional and
conditional forecasts are affected by the change in pa-
rameters previously documented. Then we study how our
proposed models fare in a real-time forecasting exercise
during the pandemic. We also check whether our exten-
sion to the standard VAR model of allowing for fat-tailed
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Table 2
Log marginal likelihood for the large BVAR.

Weak SZ Strong SZ Weak SZ Strong SZ

19Q4 −6480.35 −3756.80 −3918.06 19Q4 −5915.25 −3485.19 −3695.15
20Q1 −6615.97 −3864.18 −4021.19 20Q1 −5982.10 −3539.20 −3751.03
20Q2 −6756.28 −3978.87 −4151.69 20Q2 −6062.13 −3608.26 −3810.56
20Q3 −6889.06 −4067.78 −4233.83 20Q3 −6152.90 −3717.54 −3905.92
20Q4 −6964.35 −4114.55 −4298.21 20Q4 −6190.53 −3766.41 −3957.56
21Q1 −7049.20 −4151.13 −4334.66 21Q1 −6299.66 −3807.15 −4000.44
21Q2 −7134.59 −4199.77 −4388.15 21Q2 −6323.87 −3852.67 −4045.27

(a) BVAR with Gaussian errors (b) BVAR with fat-tailed errors

Note: The bold figure indicates the maximum log marginal likelihood for each model in a selected estimation window. ‘Weak’ stands for weakly
informative, and ‘SZ’ stands for Sims and Zha.
,

errors affects unconditional forecasts before and after the
pandemic. Finally, we show in a real-time setup that
bringing off-model information to our VAR model would
have improved the inflation forecast during the pandemic.

3.1. Impact of COVID-19 observations on unconditional fore-
casts

The change in parameters generated by the COVID-19
bservations in traditional Gaussian VAR models has an
mpact on the forecast paths as well. Focusing again on
nflation, Fig. 6 shows the unconditional forecasts starting
021:Q3 for the BVAR models previously described. In
roducing these forecasts, the data and the starting date
f the forecast are the same. The only thing that differs is
he sample on which the coefficients have been estimated.
n other words, the change in the forecast path solely
eflects revisions in VAR parameter estimates. Panels (a)
nd (b) show that in the case of the small-scale VAR, un-
onditional forecasts for both a weakly informative prior
nd the Sims and Zha prior exhibit visible variation once
he COVID-19 observations are added to the estimation
ample. Specifically, the short-run and long-run forecasts
or inflation bounce down when the abnormal 2020:Q2
bservation is included in the sample (blue line) and up
gain when including more quarters over the pandemic
eriod. The effect of changing parameters on the fore-
ast path is more pronounced for the weakly informative
rior. In contrast, unconditional forecasts are only mildly
ffected in the BVAR with fat-tailed errors (Panel (c)) or
n the large-scale Gaussian BVAR with a strong Sims and
ha prior (Panel (d)).
Interestingly, the projected paths of inflation are quite

imilar for both the small-scale fat-tailed BVAR and the
arge-scale Gaussian BVAR. With actual data up to 2021:Q2
oth models predict that inflation would eventually nor-
alise after the spike in 2021. The forecast bands are
omewhat wider for the fat-tailed BVAR than for the
arge-scale Gaussian model. Also, the bands under the fat-
ailed BVAR become wider (hardly visible in the figures)
s soon as the COVID-19 observations are included in
he estimation sample. This is due to the fact that the
stimated degrees-of-freedom parameter declines, which
ncreases the unconditional variance of the forecast er-
ors.
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3.2. Impact of COVID-19 observations on conditional fore-
casts

Most policy institutions rely on some type of condi-
tional forecast in order to form an opinion on the likely fu-
ture inflation path. The previous section showed that the
unconditional forecast paths are sensitive to the change
in parameters brought about by the inclusion of the pan-
demic observations. A natural question arises whether the
inclusion of off-model information while producing con-
ditional forecasts mitigates this forecast instability prob-
lem.

‘Hard conditioning’ using external projections
We illustrate how the change in coefficients brought

about by the COVID-19 shock affects conditional forecasts
for euro area inflation when taking into account external
projections. Specifically, we condition on a set of off-
model projected paths for the following variables: real
GDP growth based on the Survey of Professional Fore-
casters,23 the price of oil based on futures contracts,24
and the nominal effective exchange rate, which is kept
constant over the projection horizon, mimicking a com-
mon practice in policy circles. The path of the variables
is strictly imposed using the algorithm of Waggoner and
Zha (1999) without the updating step. Again, as in the
exercise showing unconditional forecasts, the aim is to
study the change in the forecast path coming solely from
the revisions in VAR parameters; the starting date of the
forecast, the actual data, and the conditioning data are the
same across all the coloured lines in the figure.

Fig. 7 shows that conditional forecasts using the small-
scale Gaussian BVAR are now less sensitive to the change
in parameter estimates over the expanding estimation
window for all prior specifications, even for the weakly
informative one; see Panels (a) and (b). Including the
2020:Q2 information does not result in an explosive or
a dramatically changed forecast anymore. Thus, the prob-
lem of unstable forecasts can be mitigated by conditioning
on a sufficient set of variables that exhibit well-behaved
future paths and are strongly interlinked with the tar-
get variable. Similarly, the conditional forecasts of the

23 We use the one-, two-, and five-year-ahead real GDP growth
expectations of the ECB SPF 2021:Q3 round (i.e. the latest available
when the ECB projected inflation as of 2021:Q3) and we interpolate
linearly for missing quarters.
24 As of 16 August 2021, corresponding to the cut-off of the ECB
inflation projections starting in 2021:Q3.



E. Bobeica and B. Hartwig International Journal of Forecasting 39 (2023) 519–539
Fig. 6. Unconditional forecasts starting in 2021:Q3. Note: The forecast starts in 2021:Q3; parameters are estimated on an expanding estimation
window. Coloured thick lines are median estimates, and the (overlapping) light blue areas are the 68% credible interval for each respective estimation
window.
Fig. 7. ‘Hard conditioning’ forecasts starting in 2021:Q3. Note: Forecasts conditional on real GDP growth (as in the 2021:Q3 ECB Survey of Professional
Forecasters), oil price futures (as of 16 August 2021), and a constant nominal effective exchange rate; parameters are estimated on an expanding
window. Coloured thick lines are median estimates, and the (overlapping) light blue areas are the 68% credible interval for each respective estimation
window.
BVAR with fat-tailed errors are not sensitive to the in-
clusion of the pandemic observations in the estimation
sample (Panel (c)). This model yields a slightly higher
medium-term inflation outlook than the Gaussian one,
and compared to its unconditional version, inflation is
now expected to stabilise at somewhat higher levels. Con-
ditional forecasts are also stable for the large BVAR (Panel
(d)). Overall, this suggests that conditioning on a rele-
vant information set alleviates the problem of in-sample
parameter instability.
528
‘Soft conditioning’ using expectations of the Survey of Pro-
fessional Forecasters

Using the previously described methodology of pro-
ducing conditional forecasts, the imposed future paths of
the conditioning variables always hold exactly. However,
in particularly uncertain times, one may want to consider
off-model information with some degree of uncertainty
around it. This is known as ‘soft conditioning’; see the rel-
ative entropy method proposed by Robertson et al. (2005).
The main idea of this approach is to derive a new pre-
dictive distribution ‘tilted’ to the mean or median of the
distribution of the off-model information (and possibly
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lso to some quantile values) that is as close as possible
o the initial unconditional forecast distribution (which
ight not be the case in the approach by Waggoner and
ha (1999)).
In principle, one can apply this procedure to produce

orecasts for any variable included in the VAR by ‘tilting’
ts unconditional forecast to some off-model information
egarding its future path. Here we illustrate this approach
y considering expectations of the Survey of Professional
orecasters (SPF) for the euro area.25 This alternative ap-
roach alleviates the issue of having to come up with a
et of strong assumptions, as in Primiceri and Tambalotti
2020), interpolation issues in case forecasts are available
nly for some quarters, and the problem of imposing the
uture path of many variables included in the model. It
an also constitute a valid crosscheck for hard conditional
orecasts.

We produce soft conditional forecasts by considering
he median SPF inflation expectations for one, two, and
ive years ahead, but also long-term real GDP growth ex-
ectations; see Fig. 8. Panel (a) shows that tilting the un-
onditional inflation forecasts to median SPF values for in-
lation and GDP yields inflation forecasts which are robust
o the parameter change induced by the COVID-19 ob-
ervations.26 Nevertheless, these conditions are not suffi-
ient to ensure overall stability in the Gaussian VAR with
weakly informative prior. Furthermore, Panel (b) shows
orecasts when the unconditional distribution is tilted
o five-year-ahead inflation only. Thus, whereas long-run
xpectations are crucial to ensure stability, short-run ex-
ectations are important to ensure an informed profile of
he future inflation path.

. Forecasting inflation during the pandemic

The previous section documented the sensitivity of
nconditional and conditional forecasts with respect to
hanging VAR parameters during the pandemic. In this
ection, we study how our proposed models would have
ared when forecasting inflation in real time. We also
nvestigate the comparative forecasting advantage of the
at-tailed BVAR model by looking at a longer period of
ime and at a larger set of countries in a pseudo-out-of-
ample forecast evaluation.

.1. Real-time forecast evaluation

Would a forecaster have been better equipped by using
ur fat-tailed BVAR compared to using a standard Gaus-
ian model when trying to forecast inflation during the
andemic? We investigate this question by looking at our
enchmark small-scale BVAR.27

25 Grothe and Meyler (2018) show that these expectations have a
non-negligible predictive power for euro area inflation developments,
as compared to statistical benchmark models.
26 Our codes adjust the tilting function included in the BEAR toolbox;
see Dieppe et al. (2016).
27 All vintages for the seven variables included in the benchmark
BVAR (real GDP, HICP, price of oil, nominal effective exchange rate,
short-term rate, 10-year government bond spread, and share in world
GDP), as well as the conditioning variables coming from the Survey
of Professional Forecasters and the oil price futures, correspond to the
official ECB’s macroeconomic projection cut-off dates.
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Table 3 shows the root mean squared forecast er-
ror (RMSFE) for inflation over the period from 2020:Q1–
2021:Q2. Given the very short period, the results can only
provide some hints towards promising avenues to explore
when forecasting inflation during the pandemic. The first
column shows the figures corresponding to unconditional
forecasts within a standard Gaussian BVAR. Compared to
this model, it would have paid off to employ a model
with fat-tailed errors, as doing so would have produced
a smaller RMSFE over the pandemic period (second col-
umn). As an additional benchmark to the Gaussian BVAR,
we employ the same VAR model augmented with dummy
variables for each quarter during the pandemic, which we
label dummy BVAR.28 This can appear to be a simple fix to
the problem of changing parameters when including the
COVID-19 observations in the sample, as it basically fixes
the parameter estimates to the pre-pandemic period (as
done in Schorfheide and Song (2020)).29 This benchmark
has the advantage that the dummy variables are able
to absorb the variation induced by the COVID-19 obser-
vations, leaving the remaining parameters of the BVAR
largely unchanged. Nevertheless, it has the disadvantage
that, unlike the BVAR with fat-tailed errors, it requires
several ad hoc choices from the modeller, such as when
pandemic observations start and when the pandemic will
be over (which would be an indication to stop includ-
ing dummy variables). Also, it is not a priori clear how
an informative prior should be formulated for the dum-
mies such that economic relations might be affected by
the COVID-19 shock during the pandemic. Table 3 shows
that unconditional forecasts based on a dummy BVAR
would have outperformed the ones based on an unad-
justed Gaussian BVAR, but the BVAR with fat-tailed errors
beats this benchmark—especially at longer horizons.

Including off-model information brings sizeable gains
to forecasting inflation during the pandemic. Uncondi-
tional forecasts based on models that only look at past
historical patterns of the data are hard to trust during
the pandemic, as COVID-19 is an unprecedented macroe-
conomic shock. It has complex effects on the demand-
and supply-side of the economy (Guerrieri et al., 2020)),
highly heterogeneous impacts across sectors and agents,
and unknown behavioural consequences. For a stylised
representation of the channels through which the COVID-
19 shock affects inflation; see Fig. B.7 in Online Appendix
B. As such, these times are ideally suited to adding infor-
mation from outside the model to inform purely model-
based forecasts, as also argued by Primiceri and Tam-
balotti (2020). Both the considered hard and soft con-
ditional inflation forecasts would have been superior to
unconditional ones in a Gaussian BVAR (columns 4 and
7, compared to column 1). Compared to these, the BVAR

28 For the dummy variables, we assume an uninformative prior with
mean zero and variance of 105 .
29 Carriero et al. (2021) also explore the workings of a VAR
augmented with dummy variables for each month since March 2020.
The dummies fully absorb the variation induced during the pandemic,
leaving all parameters unchanged. Though this strategy stabilises
the parameters of the VAR model, the authors note that stochastic
volatility remains at pre-pandemic levels, which yields implausibly
narrow forecast bands.
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Fig. 8. Conditional forecasts based on tilting to SPF expectations. Note: Forecasts tilted to SPF expectations for inflation and real GDP growth starting
n 2021:Q3 and using parameters from an expanding window estimation. Coloured thick lines are median estimates, and the (overlapping) light
lue areas are the 68% credible interval for each respective estimation window.
Table 3
Real-time forecast evaluation for euro area inflation: RMSFE.

Unconditional Hard conditioning Soft conditioning

BVAR BVAR t BVAR D BVAR BVAR t BVAR D BVAR BVAR t BVAR D

h = 1 0.61 0.58 0.60 0.47 0.50 0.62 0.56 0.56 0.55
h = 2 1.07 0.98 1.02 0.84 0.91 1.05 0.88 0.91 0.88
h = 3 1.41 1.13 1.17 0.93 0.91 1.01 0.99 0.98 0.96
h = 4 1.66 1.19 1.25 1.01 0.96 0.94 1.01 1.01 1.00

Note: RMSFE during COVID-19 pandemic for HICP inflation. BVAR denotes a standard Gaussian BVAR, BVAR t is the fat-tailed BVAR, and BVAR D is the
VAR augmented with dummy variables each quarter over the COVID-19 period. The evaluation sample covers the period from 2020:Q1–2021:Q2.
530
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Fig. 9. Information used by professional forecasters of inflation at various forecast horizons. Note: Professional forecasters’ response to the question:
To what extent are your point forecasts model- or judgement-based? (percent of responses).
Source: ECB (2019)
ith fat-tailed errors largely loses its comparative advan-
age, suggesting that, indeed, meaningful off-model infor-
ation makes a difference in forecasting in a standard
AR, as discussed in the previous section.
While the forecast gain from bringing in meaningful

ff-model information to the VAR is notable, our exercise
uggests that it does not make a big difference whether
ne does this via hard conditioning on several variables
including real GDP, as in the SPF) or via soft conditioning
n the inflation expectations of professional forecasters.
t is clear in any case that the expectations of profes-
ional forecasters can discipline econometric models in
urbulent times. This is also because professional fore-
asters do not solely rely on models, which have likely
een adversely affected by COVID-19 observations, but
se judgement when submitting their forecasts (see the
iscussion in de Vincent-Humphreys et al. (2019)). In a
pecial ECB SPF questionnaire (see ECB (2019)), respon-
ents indicated that a sizeable share of their forecast
an be attributed to their judgement, especially when it
omes to long-term forecasts; see Fig. 9.
Tilting model-based inflation forecasts to SPF expec-

ations has been investigated recently, but for somewhat
ifferent reasons. Ganics and Odendahl (2021) focus on
he euro area and show that survey forecasts can help
itigate the effects of structural breaks on the forecast-

ng performance in a VAR. They also find that profes-
ional forecasters are better at forecasting than a standard
ayesian VAR model around the two recent euro area
ecessions, as well as the slow recovery thereafter. This
s a particularly challenging period for forecasting euro
rea inflation as reduced-form time series models have
hard time providing accurate forecasts (as also dis-

ussed in Bańbura and Bobeica (2020)). Similarly, Tallman
nd Zaman (2020) show that such tilting produces su-
erior inflation forecasts after the Great Recession in the
.S., acting as a way of indirectly accommodating struc-
ural changes (and mitigating misspecification issues in a
AR). Bańbura et al. (2021) document forecast gains for
uro area inflation and GDP when an optimal forecast
ombination from many models is tilted to the more
ubjective SPF mean. It is worth noting that when tilting
531
to both first and second moments of the SPF, there is a
general worsening of the forecasting performance, so the
authors recommend tilting only to the mean.

Fig. 10 shows the real-time predictions of euro area
inflation during the COVID-19 crisis using both uncondi-
tional and conditional forecasts. Panels (c) and (d) show
that incorporating alternative information brings the pro-
jection for euro area inflation closer to its actual level,
which is consistent with the RMSFE analysis. In addition
to the information included in Table 3, it becomes obvious
that in the first phase of the pandemic, inflation tended
to surprise on the downside, and subsequently, it turned
out to be notably higher than foreseen. The puzzling be-
haviour of inflation during the pandemic is also reflected
in the marked revisions to the short-term inflation expec-
tations of professional forecasters (see Fig. 11).

Throughout 2020, analysts lowered their inflation ex-
pectations, particularly for the short term. Part of this
revision was driven by oil price developments. In addition,
in the perceptions of SPF panellists (see ECB (2020)), de-
mand factors were largely considered dominant relative
to possible supply-side and scarcity effects. The combi-
nation of lower oil price assumptions and the drop in
demand led SPF respondents to revise HICP inflation ex-
pectations down sharply for shorter horizons, and the
downward adjustment also involved expected core infla-
tion. The second year of the pandemic marked a reversal
in inflation dynamics. Inflation in the euro area (and in
other advanced economies) surged, on the back of the re-
bound in oil prices and rising cost pressures from supply-
side bottlenecks which accompanied the reopening of the
economies. Inflation exceeded the expectations of profes-
sional forecasters, who revised their near-term outlooks
quite markedly (see Fig. 11). This pattern is valid also
for other advanced economies, such as the U.S. (see the
discussion in Meyer et al. (2021)). At the same time, de-
spite the large swings in near-term inflation expectations,
long-term expectations remained fairly stable. This is also
reflected in Fig. 10, Panel (d), where soft conditioning
disciplines inflation forecasts beyond the near term.
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Fig. 10. Real-time inflation forecast. Note: Real-time forecast for inflation estimated over an expanding window. The thick black line is the actual
inflation, the coloured dashed lines are median estimates, and the (overlapping) light blue areas are the 68% credible interval for each respective
estimation window.
Fig. 11. Revisions in short- and long-term euro area inflation expectations for various forecast horizons. Note: ECB Survey of Professional Forecasters.
4.2. Pseudo-forecast evaluation and cross-country evidence

Our assessment over the pandemic period is that the
olution that we propose for disciplining BVAR param-
ters in abnormal times is also superior to a standard
aussian BVAR when it comes to unconditional forecasts.
aution is warranted, of course, given the very short avail-
ble pandemic sample. In order to form a better view of
hether this model is a valid solution in general, we con-
uct a forecast evaluation over a longer sample (starting
n 1995), where we compare the fat-tailed BVAR with its
aussian counterpart. For the euro area, such an exercise
an be done only using a pseudo-real-time setup, due to
he lack of real-time vintages going so far back into the
ast.
Specifically, we evaluate the accuracy of unconditional

orecasts in the small BVAR with the Sims and Zha prior
n the pre-pandemic sample from 1995:Q1 until 2019:Q4,
nd during the COVID-19 period from 2020:Q1 until
021:Q2. To do so, we re-estimate each model over an
xpanding window using 1980:Q1 as a starting date,
imulate a forecast, and evaluate the horizons from one
uarter to four quarters ahead. The forecast performance
s measured in terms of point and density predictions.30

30 Appendix A provides some computational details for the
evaluation metrics.
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For the point prediction, we compute the root mean
squared forecast error (RMSFE) using the posterior mean
of the predictive distribution. The performance of den-
sity forecasts is judged by two commonly used scoring
rules: the average continuous ranked probability score
(ACRPS), for which the lower the value the better; and
the average log predictive likelihood (ALPL), for which
the higher the value the better.31 Even though various
authors have argued in favour of either ACRPS or ALPL,
Krüger et al. (2021) stress that this choice appears ulti-
mately subjective. Particularly, we consider both scoring
rules because they may yield different answers regarding
the best performing model in the event of extreme obser-
vations; see Bjerregård et al. (2021). The CRPS measures
the quadratic difference between the predicted and em-
pirical cumulative distribution function. By construction,
this metric rewards observations close to the median and
is less sensitive to extreme observations. The log predic-
tive likelihood, on the other hand, evaluates the likelihood
of the observation based on its predictive density. As such,
extreme observations are particularly punished if the tails
of the predictive density are too thin.

Table 4 reports the outcome of this forecast evalua-
tion for real GDP growth and HICP inflation. Prior to the

31 For recent applications; see e.g., Chan (2020), Clark and Ravazzolo
(2015), and Carriero et al. (2021).
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Table 4
Pseudo-out-of-sample forecast evaluation.
(a) Real GDP growth

RMSFE ACRPS ALPL

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

BVAR 0.52 0.95 1.37 1.75 0.26 0.48 0.71 0.93 −0.83 −1.38 −1.77 −2.07
BVAR t 0.51 0.94 1.36 1.74 0.25 0.46 0.69 0.90 −0.74 −1.24 −1.64 −1.92

(I) Pre-COVID-19 period: 1995:Q1–2019:Q4

BVAR 9.03 11.72 13.07 14.79 5.73 7.14 8.22 9.26 −34.09 −63.40 −55.06 −44.43
BVAR t 7.38 8.71 8.90 9.69 5.01 5.61 6.13 7.35 −6.67 −6.72 −7.43 −8.89
BVAR D 7.49 8.93 9.04 9.77 5.05 5.76 6.08 7.04 −61.45 −80.80 −69.11 −63.25

(II) COVID-19 period: 2020:Q1–2021:Q2

(b) HICP inflation

RMSFE ACRPS ALPL

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

BVAR 0.30 0.54 0.75 0.99 0.16 0.28 0.39 0.52 −0.25 −0.82 −1.12 −1.39
BVAR t 0.30 0.53 0.72 0.96 0.16 0.28 0.38 0.50 −0.22 −0.72 −1.03 −1.33

(I) Pre-COVID-19 period: 1995:Q1–2019:Q4

BVAR 0.61 1.06 1.35 1.56 0.32 0.66 0.78 0.80 −1.09 −1.90 −1.68 −1.59
BVAR t 0.58 0.99 1.12 1.14 0.31 0.64 0.71 0.67 −0.86 −1.71 −1.67 −1.58
BVAR D 0.59 1.02 1.16 1.21 0.31 0.63 0.68 0.67 −1.05 −1.82 −1.55 −1.48

(II) COVID-19 period: 2020:Q1–2021:Q2

Note: Forecast evaluation metrics prior to and during the COVID-19 pandemic for (a) real GDP growth and (b) HICP inflation. BVAR denotes a
standard Gaussian BVAR, BVAR t is the fat-tailed BVAR, and BVAR D is the BVAR augmented with dummy variables for each quarter in the COVID-19
period.
pandemic period, the BVAR with fat-tailed errors pro-
duces slightly more accurate point and density predic-
tions for both real GDP growth and HICP inflation as
compared to the standard Gaussian BVAR. During the
pandemic, the fat-tailed model exhibits a clear upper
hand over the standard Gaussian model. It produces sub-
stantially more accurate point and density predictions for
real GDP growth and HICP inflation, especially at longer
forecast horizons. Therefore, the unconditional forecast
accuracy of a Gaussian BVAR model suffers particularly
when extreme observations distort parameter estimates.

The dummy-augmented BVAR, on the other hand, is a
competitive benchmark during the pandemic. Overall, the
accuracy of point predictions is at a similar level to that of
the fat-tailed BVAR, though the latter is somewhat more
accurate at longer horizons. One driving force behind this
relative improvement of the fat-tailed BVAR might be that
it implies less persistent propagation of macroeconomic
shocks as compared to the dummy-augmented Gaussian
BVAR. In terms of density predictions, the evidence is
more mixed. The ACRPS suggests that the quality of the
density predictions is of similar accuracy for both real GDP
and HICP inflation. However, the ALPL draws a different
picture. Under this metric, the dummy-augmented BVAR
produces the worst density forecast for real GDP, while
the figures for HICP inflation are comparable. The reason
behind this seemingly unintuitive result is that the pre-
dictive distribution of the dummy BVAR (excluding the
dummies from the forecast exercise) is too far away from
the actual realisation of real GDP. In other words, the tails
of the predictive distribution are too thin to rationalise
these abnormal observations. Updating the VAR param-
eters helps in this respect, but generates unreasonable
533
forecasts, as discussed above. Thus, the log predictive like-
lihood may discard a very competitive forecast model, as
the predictive distribution is heavily mis-specified. Since
the predictive likelihood and the marginal likelihood are
closely connected (Geweke & Amisano, 2010, 2011), this
also explains why the marginal likelihood may favour an
overall explosive model—specifically, because it is unable
to rationalise extreme observations with more stable pa-
rameters. Similar messages arise based on the large VAR.
The forecast evaluation is presented in Table B.1 in Online
Appendix B.

While the pandemic was a global shock, each country
reacted differently when it came to containment mea-
sures. So one might ask whether the findings for the
euro area are also valid for other countries. This is also
a way to check the robustness of the finding that the
BVAR with fat-tailed errors is a viable alternative to Gaus-
sian BVARs when it comes to inflation forecasting before
and after the pandemic. We found that for major euro
area countries (France, Germany, Italy, and Spain), and
for Canada, the United Kingdom, the U.S., and Japan, the
model with fat-tailed errors is a valid alternative tool to
a standard Gaussian BVAR when it comes to forecasting
inflation. The differences in forecasting performance are
marginal in the pre-COVID-19 period, but as soon as the
extreme observations kick in, the model equipped with
fat-tailed residuals outperforms; see Tables B.2, B.3, and
B.4 in Online Appendix B.

5. Modelling the COVID-19 shock with univariate and
multivariate t-distributed errors

A relevant question is whether the solution of relaxing

the normality assumption of the residuals works only
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Fig. 12. Implied volatility under multivariate and univariate t errors. Note: Coloured thick lines are posterior median estimates of implied volatility
in the following models with t-errors: (i) BVAR-t using one lag (BVAR-t) and the single-equation regression of the VAR model for (ii) real GDP
growth (SgEq RGDP) and (iii) inflation (SgEq HICPx).
for multi-equation systems such as VARs, or whether it
also works for single-equation models. We show that it
actually is the joint multivariate and fat-tailed errors that
manage to robustify models against extreme observations.
We illustrate this by taking a simple Phillips curve model,
a key macroeconomic relationship used to gauge past
and future inflation dynamics. In central banking, it is
one of the pillar frameworks in thinking about inflation,
with reduced-form models often employed to grasp the
link between inflation and real activity (see Yellen (2015)
and Eser et al. (2020)).

In the single-equation framework, fatter tails are less
effective at mitigating the impact of extreme observa-
tions, as they primarily capture abnormal variations asso-
ciated with the dependent variable, but not so much those
induced by an exogenous regressor (since its coefficients
can always be shrunk to zero to mitigate the impact on
the errors). Intuitively, in the multivariate setup, all vari-
ables are re-scaled by a common volatility factor, which is
informed by the innovations in all endogenous variables,
while in the single-equation setup, this volatility factor is
informed only by the residuals of the dependent variable.
For technical details; see Appendix A.

To illustrate this point, consider the following example
with a simple Phillips curve model, using real GDP growth
as a measure of slack, its own lag, and no other exogenous
regressor (such as external price pressures or inflation
expectations):

πt = α + ρπt−1 + βyt−1 + ϵt

where πt is the seasonally adjusted quarterly growth rate
of inflation excluding energy and food (HICPx), and yt is
the seasonally adjusted quarterly growth rate of the real
gross domestic product (RGDP).

We estimate the coefficients using system and single-
equation techniques. For the system estimation, we use:
(i) a Bayesian VAR with Gaussian errors, (ii) a Bayesian
VAR with multivariate t-distributed errors, and (iii) a
counterfactual BVAR with exogenous time-varying vari-
ance Λ (as detailed below). For the single-equation esti-
mation, we use a univariate version of the three models
listed above. As a prior distribution, we assume a dif-
fuse (non-informative) prior for all parameters. We obtain
different estimates of λ from the models with t-errors:
the BVAR-t (λVAR) and the single-equation regression of
the VAR equation for the output gap (λ ) and HICP
RGDP
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inflation excluding energy and food (λHICPx), respectively.
Subsequently, the posterior medians of these λ’s are fed
into the model with exogenous time-varying variance to
study the impact of allowing for fat tails on the coefficient
estimates.

Fig. 12 shows the implied volatility by these λ’s. Both
λVAR and λRGDP spike when the COVID-19 pandemic wreaks
havoc on the euro area, whereas λHICPx remains relatively
flat during this period. This illustrates that different in-
formation sets may crucially affect these λ’s in the multi-
and univariate setup with t-errors.

How do these different estimates of λ affect the in-
ference about the coefficients in Eq. (5)? Table 5 shows
the posterior mean of the coefficients using the estimation
choices described above for (a) the pre-COVID-19 sample
and (b) with the COVID-19 observations included in the
estimation sample.

Focusing on the pre-COVID-19 sample (Panel (a)), the
estimated slope of the Phillips curve β is the same for
the Gaussian model estimated as a system or as a single
equation (column ‘Gaussian’). The slope coefficients of
the fat-tailed model (column ‘Fat-tailed’) are also very
similar. However, other coefficients such as the intercept
and persistence differ slightly between the two versions.
These differences can be explained by the fact that the λ’s
differ across the two options (multi- versus univariate t-
errors), mainly because of differences during the financial
crisis; see Fig. 12.

The COVID-19 observations lead to a decrease in the
Phillips curve slope by about 80% for real GDP growth;
see Panel (b) (columns ‘Gaussian’ and ‘Fat-tailed, SgEq’).
This strong parameter revision in the univariate fat-tailed
model (but also in the Gaussian model) occurs because
the COVID-19 observations are not heavily discounted,
since the λHICPx remains rather flat. In contrast, when β

is estimated under multivariate t-distributed errors (col-
umn ‘Fat-tailed, System’), the slope coefficient changes
considerably less, by about 30%. In addition, when es-
timating this equation with a known λ from the VAR
(column ‘Gaussian(λVAR)’) or the real GDP growth equa-
tion (column ‘Gaussian(λRGDP )’), the slope coefficients also
change by a similar amount as compared to the system
estimation, whereas when plugging in λHICPx, they change
substantially (column ‘Gaussian(λ )’).
HICPx
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Table 5
Simple Phillips curve coefficients with real GDP growth (qoq, sa).

Gaussian Fat-tailed Gaussian(λVAR) Gaussian(λRGDP ) Gaussian(λHICPx)

Coeff. System SgEq System SgEq System SgEq System SgEq System SgEq

α 0.041 0.042 0.029 0.034 0.029 0.029 0.040 0.041 0.038 0.038
ρ 0.945 0.945 0.955 0.951 0.955 0.955 0.951 0.951 0.950 0.950
β 0.031 0.030 0.029 0.028 0.029 0.029 0.029 0.028 0.027 0.027

(a) Simple Phillips curve estimated until 2019:Q4

Gaussian Fat-tailed Gaussian(λVAR) Gaussian(λRGDP ) Gaussian(λHICPx)

Coeff. System SgEq System SgEq System SgEq System SgEq System SgEq

α 0.088 0.090 0.055 0.073 0.056 0.054 0.070 0.069 0.074 0.073
ρ 0.943 0.942 0.952 0.951 0.951 0.952 0.947 0.948 0.950 0.950
β 0.006 0.006 0.020 0.006 0.020 0.021 0.020 0.020 0.005 0.005

(b) Simple Phillips curve estimated until 2021:Q2

Note: Posterior mean of Phillips curve coefficients based on various modelling assumptions. The first top row denotes the class of the error
distribution—i.e. Gaussian is normal errors, Fat-tailed is t-errors, and Gaussian(·) is normal errors with exogenous time-varying variance—and the
second row describes whether the equation was estimated as a system (System) or as single equation (SgEq).
o
i
t
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6. Conclusions

The parameters of Gaussian VAR models, frequently
employed to analyse inflation by central bankers and
other practitioners, are strongly affected by the COVID-
19 observations and this has a bearing on the inflation
forecast path.

We showed that relaxing the assumption of normal
errors and allowing them to follow a multivariate t-
distribution appear to tackle the parameter instability
problem. In this way, tail events are accommodated by
the residuals, and this diminishes the impact on the pa-
rameters. We also showed that it is the joint multivariate
and fat-tailed error modelling that manages to robustify
models against extreme observations. In a single-equation
setup such as a Phillips curve, the fat-tailed error solution
is less effective.

Within a standard Gaussian Bayesian VAR, the choice
of prior matters, with more informative specifications or a
higher degree of prior shrinkage (more suitable for larger
BVARs) acting in favour of stabilising the results after
the COVID-19 shock. Both a fat-tailed BVAR and a large
Gaussian BVAR with more prior shrinkage ensure stable
unconditional forecasts. Nevertheless, as past data do not
record an event similar to COVID-19, adding relevant off-
model information to the purely model-based forecast is
crucial for producing more trustworthy forecasts.

In a real-time forecast exercise, we found that the fat-
tailed BVAR is notably superior to its Gaussian counter-
part. Also, including off-model information, such as that in
the ECB’s Survey of Professional Forecasters, brings size-
able gains to forecasting inflation during the pandemic.
Both the considered hard and soft conditional inflation
forecasts would have been superior to unconditional ones
in a standard Gaussian BVAR. Compared to these, the
BVAR with fat-tailed errors loses part, but not all of its
comparative advantage.

Notwithstanding our documented forecast gains over
a standard Gaussian BVAR, also in our best models, in the
first phase of the pandemic, inflation tended to surprise
on the downside, and subsequently it turned out to be
notably higher than foreseen. The puzzling behaviour of
inflation during the pandemic is also reflected in the
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marked revisions to the short-term inflation expectations
of professional forecasters, who were surprised by infla-
tion, first on the downside (in the first year of the pan-
demic) and then on the upside (in the second pandemic
year).

As a lesson for practitioners, we suggest that before
deriving conclusions based on existing models, one has
to check and be aware of how the COVID-19 observa-
tions affect the parameter estimates and the implied fore-
casts. Also, adding meaningful off-model information to
the model, such as that in the Survey of Professional Fore-
casters, brings forecast gains when forecasting inflation
in turbulent times such as the pandemic. As new obser-
vations pile up, the distortion of traditionally estimated
parameters diminishes. Yet, a simple model with Gaussian
and homoscedastic errors cannot account for the extreme
observations in COVID-19 times.
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Appendix A. The proposed econometric solution for
estimating BVARs after March 2020. Errors with a t-
distribution and dummy observation prior

Bayesian VAR with multivariate t-distributed errors

Let yt be an n × 1 vector of variables that is observed
ver the periods t = 1, . . . , T . Consider the follow-
ng generic VAR(p) model with independent multivariate
-errors:

t = a0 +A1yt−1 +· · ·+Apyt−p + ϵt , ϵt ∼ t(0, Σ, ν) (1)

here a0 is an n×1 vector of intercepts and A1, . . . , Ap are
×n coefficient matrices. Let x′

t = (1, y′

t−1, . . . , y
′
t−p) be a

× k vector of an intercept and lags with k = 1+ np, and
et A = (a0, A1, . . . , Ap)′ be a k× n matrix. The error term
ϵ follows an independent multivariate t-distribution with
t



E. Bobeica and B. Hartwig International Journal of Forecasting 39 (2023) 519–539

c
f

b
s

y

i

Σ

g

λ

a
u

ν

w
e

b
Λ

i
s
T
t
d

(

w

K

d
g

d

A
p

(

ovariance matrix Σ of dimension n × n and degrees of
reedom ν.

The multivariate t-distribution of the error term can
e represented by a scale mixture of normal distributions;
ee Geweke (1993) and Ni and Sun (2005):
′

t = x′

tA + ϵt , ϵt |λt ∼ N(0, λtΣ) (2)

where λt is a latent state variable that is inverse-gamma
distributed, i.e. λt ∼ IG(ν/2, ν/2).

Next, we stack the observation over t = 1, . . . , T ,
which yields

Y = XA + E, E ∼ MN(0, Σ ⊗ Λ) (3)

where Y , X , and E are respectively of dimensions T × n,
T × k, and T × n. MN denotes the matric-variate nor-
mal distribution, ⊗ is the Kronecker product, and Λ =

diag(λ1, . . . , λT ) is of dimension T × T .
We assume that the priors for p(A, Σ), p(Λ), and p(ν)

are independent. For (A, Σ) we adopt a standard normal-
nverse-Wishart prior:

∼ IW (S0, v0), A|Σ ∼ MN(A0, Σ ⊗ VA) (4)

For Λ, we assume that λt is independently inverse-
amma distributed:

t ∼ IG(ν/2, ν/2) (5)

nd for ν we follow (Chan & Hsiao, 2014) and assume a
niform prior:

∼ U(2, ν̄) (6)

here ν̄ = 50 is sufficiently large to approximate normal
rrors.
Because of the prior structure, the posterior draws can

e obtained by sequentially sampling from: (1) p(A, Σ |Y ,
); (2) p(Λ|Y , A, Σ) and (3) p(ν|Y , A, Σ, Λ). As detailed

n Chan (2020), natural conjugacy of the prior p(A, Σ)
urvives even with a general covariance structure in Λ.
herefore, one can derive conditional posterior quanti-
ies for p(A, Σ |Y , Λ) that are still normal-inverse-Wishart
istributed. The conditional posterior is given by

A|Y , Σ, Λ) ∼ MN(Â, Σ ⊗ K−1
A ) (7)

(Σ |Y , Λ) ∼ IW (Ŝ, v0 + T ) (8)

here

A = V−1
A + X ′Λ−1X

Â = K−1
A (V−1

A A0 + X ′Λ−1Y )

Ŝ = S0 + A′

0V
−1
A A0 + Y ′Λ−1Y − Â′K−1

A Â.

The posterior distribution for p(Λ|Y , A, Σ) can be easily
erived, as the λ1, . . . , λT are conditionally independent
iven the data and (A, Σ). Therefore, one can show that

the posterior of λt is given by

(λt |Y , A, Σ) ∼ IG
(

ν + n
2

,
1
2

(
ν + (y′

t − x′

tA)Σ
−1(y′

t − x′

tA)
′
))
(9)

Next, the posterior distribution for p(ν|Y , Λ, A, Σ) con-
itional on Λ is independent from the data and (A, Σ).
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s shown by Chan and Hsiao (2014), the conditional
osterior for ν is given by

ν|Λ) ∝ p(Λ|ν)p(ν)

∝
(ν/2)Tν/2

Γ (ν/2)T
(
Π T

t=1λt
)− ν

2 +1
exp

(
−

ν

2

T∑
t=1

λ−1
t

)
(10)

for 2 < ν < ν̄, and 0 otherwise. This density is non-
standard and we use the independence-chain Metropolis–
Hastings algorithm of Chan and Hsiao (2014) to sample
ν.

To summarise, we can sequentially sample the param-
eters (A(s), Σ (s), Λ(s), ν(s)) using a Gibbs sampler with a
Metropolis–Hasting step:

1. Draw Σ (s) from an IW (Ŝ, T + ν0) distribution
2. Draw A(s) from an MN(Â, Σ ⊗ K−1

A )
3. Draw λ

(s)
t from an IG

(
ν+n
2 , 1

2

(
ν + (y′

t − x′
tA)Σ

−1

(y′
t − x′

tA)
′
))

for t = 1, . . . , T
4. Draw ν(s) from a proposal distribution and accept/

reject using a Metropolis–Hasting step

Inference in the BVAR model with t-errors. To conduct in-
ference in the BVAR model with t-errors, it is convenient
to work with the normal mixture representation of (1):

yt = a0 + A1yt−1 + · · · + Apyt−p + λ
1
2
t Cut , ut ∼ N(0, I),

λt ∼ IG
(ν

2
,
ν

2

)
(11)

where CC ′
= Σ . Thus, conditional on λt , the BVAR

with t-errors can be represented as a standard Gaus-
sian VAR with independent but not identically distributed
errors. Specifically, the error term exhibits idiosyncratic
heteroscedasticity, which is controlled by λt .

To compute impulse response functions and uncon-
ditional and conditional forecasts from (11), we follow
the exposition of Jarociński (2010) and derive impulse
response coefficients as well as the projection matrices H
for the variables and R for the residuals of the BVAR model
with t-errors. We start by simplifying the derivation and
define the VAR in terms zt = yt − µ—with deviations of
yt from the central level µ defined as:

µ = (I − (A1 + · · · + Ap))−1a0

The VAR in the companion form is

z̃t = F z̃t−1 + Gũt (12)

where

F =

(
A1 ... Ap

I 0

)
,G =

(
λ

1
2
t C 0
0 0

)
, z̃t =

⎛⎜⎝ zt
...

zt−p+1

⎞⎟⎠ ,

ũt =

⎛⎜⎝ut
...

0

⎞⎟⎠ .

Take z̃S+h and, using (12), recursively substitute z̃S+h−1,

. . . , z̃ . In the first N rows we obtain z expressed in
S+1 S+h
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erms of data up to S and subsequent errors

S+h = F h
(1..N,.)z̃S + λ

1
2
S+hCuS+h + Φ1λ

1
2
S+h−1CuS+h−1

+ · · · + Φh−1λ
1
2
S+1CuS+1 (13)

where Φj is the upper-left n × n block of F j (F to the

power j). ΦjCλ
1
2
t is the matrix of orthogonalised impulse

response after j periods. F h
(1..N,.) is the matrix composed of

the first N rows of F h. The stacked vector of zS+1...zT can
be written as⎛⎜⎝zS+1

...

zT

⎞⎟⎠ =

⎛⎜⎝F(1..N,.)
...

F T−S
(1..N,.)

⎞⎟⎠ z̃S

+

⎛⎜⎜⎝ λ
1
2
S+1C 0 0

Φ1λ
1
2
S+1C λ

1
2
S+2C 0

ΦT−S+1λ
1
2
T−S+1C ...Φ1λ

1
2
T−1C λ

1
2
T C

⎞⎟⎟⎠
×

⎛⎜⎝uS+1
...

uT

⎞⎟⎠ (14)

r shortened as

= Hz̃S + Ru (15)

he above derivations are very similar to those of stan-
ard stationary VARs. The only difference is that the fore-
ast errors are now conditionally heteroscedastic on the
equence of λS+1, . . . , λT−S+1, which follows directly from
he normal mixture representation of the multivariate
-distribution.

orecast evaluation metrics

oot mean squared forecast error (RMSFE): Lower values
ndicate that the forecast is close to the actual value.

MSFE(yoi,t+h) =

√∑T−h
t=t0

(
yoi,t+h − E(yi,t+h|Y1:t )

)2
T − h − t0 + 1

where E(yi,t+h|Y1:t ) is the predictive mean forecast.

Average log predictive likelihood (ALPL): Higher values in-
dicate that actual observations are more likely under the
predictive density.

ALPL(yoi,t+h) =
1

T − h − t0 + 1

T−h∑
t=t0

log p(yi,t+h

= yoi,t+h|Y1,t )

where p(yi,t+h|Y1:t ) is the predictive density.

Average continuous ranked probability score (ACRPS):. Lowe
values indicate that actual observations are more likely
under the predictive distribution.

ACRPS(yoi,t+h) =
1

T − h − t0 + 1

T−h∑
CRPSi,t (yoi,t+h)
t=t0
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where CRPSi,t (yot+h) =
∫

∞

−∞
(F (z) − 1{yoi,t+h ≤ z})2dz =

Ef |Yi,t+h − yoi,t+h| − 0.5Ef |Yi,t+h − Y ′

i,t+h|, and f denotes
the cumulative distribution function associated with the
predictive density f , 1{yot+h ≤ z} denotes an indicator
function taking the value 1 if yot+h ≤ z and 0 otherwise,
and Yt+h and Y ′

t+h are independent random draws from
the posterior predictive density.

Heavy tails in single- and multiple-equation models

To understand the effect of univariate and multivari-
ate t-distributed errors on the coefficients of a (multi-
variate) linear regression model, consider the VAR in (3)
and rewrite it in seemingly unrelated regression form
using the scale-mixture Gaussian representation of the
t-distribution:

y = (In ⊗ X)a + e, e ∼ N(0, Σ ⊗ Λ) (16)

where y = vec(Y ), a = vec(A), e = vec(E), In is an identity
matrix of dimension n, and Λ is a diagonal covariance
matrix. For simplicity it is instructive to focus on the
conditional posterior mean of the coefficients under a
diffuse (non-informative) prior.32

The conditional posterior mean of a is given by

âGLS =
(
(In ⊗ X)′(Σ−1

⊗ Λ−1)(In ⊗ X)
)−1

× (In ⊗ X)′(Σ−1
⊗ Λ−1)y

=
(
(Σ−1

⊗ X ′Λ−1X)
)−1

(Σ−1
⊗ X ′Λ−1)y

=
(
In ⊗ (X ′Λ−1X)−1X ′Λ−1) y

=

⎛⎜⎝(X ′Λ−1X)−1X ′Λ−1y1
(X ′Λ−1X)−1X ′Λ−1y2

...

(X ′Λ−1X)−1X ′Λ−1yn

⎞⎟⎠

=
Λ=IT

⎛⎜⎝(X ′X)−1X ′y1
(X ′X)−1X ′y2

...

(X ′X)−1X ′yn

⎞⎟⎠ = α̂OLS

where GLS and OLS denote the generalised and ordinary
least squares estimates, respectively.

These formulas reveal two interesting properties. First,
given Λ, the system estimation (System) is equivalent
to single-equation estimation (SgEq). Second, given Λ =

IT , then âGLS = âOLS (the error term is homoscedastic
and independently Gaussian distributed). Note that under
t-distributed errors Λ ̸= IT , and hence, âGLS ̸= âOLS .

Because of the first property, if the system estima-
tion does not yield the same estimate as an equation-
by-equation estimation, then it must be the case that the
implied volatility is different in the univariate setting as
compared to the multivariate setting, i.e. ΛSgEq

̸= ΛSystem.
To see this, suppose a and Σ are fixed. Using (16), the

error is ϵt = yt − (In ⊗ x′
t )a. The conditional posterior of

λt from a regression with univariate t-distributed errors

32 Note that this posterior mean is equivalent to the generalised least
squares estimate.
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or variable yi,t is given by

SgEq
t ∼ IG

(
ν + 1
2

,
1
2

(
ν +

1
σ 2
ii

ϵ2
i,t

))
whereas the conditional posterior of λt with multivariate
t-distributed errors for yt is given by

λ
System
t ∼ IG

(
ν + n
2

,
1
2

(
ν + ϵ′

tΣ
−1ϵt

))
Thus, λt depends on different information sets (ab-

stracting from distributional differences). Particularly, λSgEq
t

depends only on the forecast error ϵi,t of the ith variable
(s2t =

1
σ2
ii
ϵ2
i,t ) in the univariate settings, while under the

ultivariate distribution, λSystem
t depends on the vector of

forecast errors ϵt (s2t = ϵ′
tΣ

−1ϵt , scalar).
For instance, suppose there is a large shock in the jth

variable but not in the ith variable. Heuristically, the pos-
terior of λ

System
t will be larger than λ

SgEq
t because there was

no unusually large forecast error in the ith variable. As
a consequence, when the parameters are updated in the
next iteration of the Gibbs sampler, the data will be down-
weighed more strongly in the multivariate setup as op-
posed to the univariate setup. The estimated coefficients
a are then different because λ

System
t ̸= λ

SgEq
t .

Appendix B. Supplementary data

Supplementary material related to this article can be
found online at https://doi.org/10.1016/j.ijforecast.2022.
01.002.
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